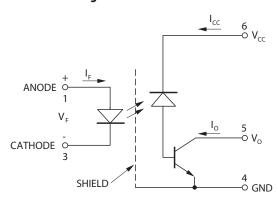
ACPL-M43T

Automotive Wide Operating Temperature 1MBd Digital Optocoupler in a 5-Pin Surface Mount Plastic Package

Data Sheet


Description

The ACPL-M43T is a single channel, high temperature, high CMR, high speed digital optocoupler in a five lead miniature footprint specifically used in the automotive applications. The SO-5 JEDEC registered (MO-155) package outline does not require "through holes" in a PCB. This package occupies approximately one-fourth the footprint area of the standard dual-in-line package. The lead profile is designed to be compatible with standard surface mount processes.

This digital optocoupler uses an insulating layer between the light emitting diode and an integrated photon detector to provide electrical insulation between input and output. Separate connections for the photodiode bias and output transistor collector increase the speed up to a hundred times over that of a conventional photo-transistor coupler by reducing the base-collector capacitance.

The ACPL-M43T has an increased common mode transient immunity of $30kV/\mu s$ minimum at $V_{CM}=1500V$ over extended temperature range.

Functional Diagram

Note: The connection of a 0.1 μF bypass capacitor between pins 4 and 6 is recommended.

Features

- High Temperature and Reliability IPM Driver for Automotive Application.
- 30 kV/μs High Common-Mode Rejection at V_{CM} = 1500 V (typ)
- Compact, Auto-Insertable SO5 Packages
- Wide Temperature Range: -40°C ~ 125°C
- High Speed: 1MBd (Typ)
- Low LED Drive Current: 10mA (typ)
- Low Propagation Delay: 300ns (typ)
- Worldwide Safety Approval:
 - UL1577 recognized, 3750Vrms/1min
 - CSA Approved

Applications

- Automotive IPM Driver for DC-DC converters and motor inverters
- CANBus Communications Interface
- High Temperature Digital/Analog Signal Isolation
- Power Transistor Isolation

Truth Table

LED	Vo
ON	LOW
OFF	HIGH

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Ordering Information

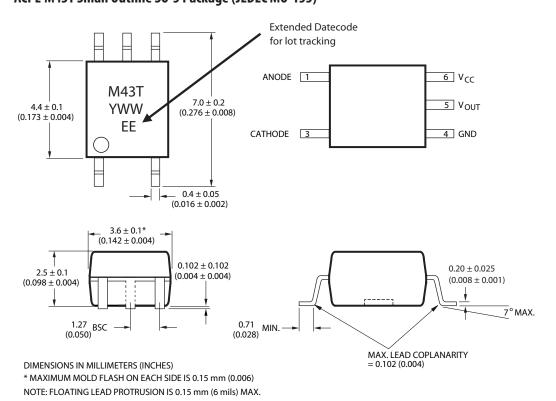
ACPL-M43T is UL Recognized with 3750 Vrms for 1 minute per UL1577 and is approved under CSA Component Acceptance Notice #5, File CA 88324.

	Opt	tion		Surface Mount	Gull Wing	Tape& Reel	UL 5000	IEC/EN/DIN EN 60747- 5-2	
Part number	RoHS Compliant	Non RoHS Compliant	Package				Vrms/ 1 Minute rating		Quantity
ACPL-M43T	-000E	No option	SO-5						100 per tube
	-500E	-500		Х	χ	Х			1500 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

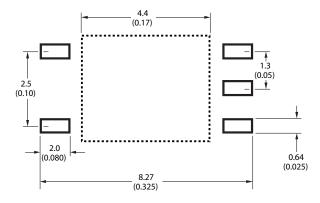
Example 1:

ACPL-M43T-500E to order product of Mini-flat Surface Mount 5-pin package in Tape and Reel packaging with RoHS compliant.

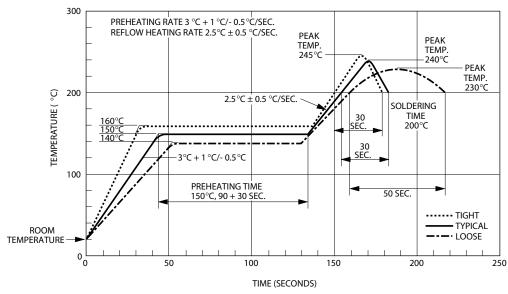

Example 2:

ACPL-M43T to order product of Mini-flat Surface Mount 5-pin package in tube packaging and non RoHS compliant. Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

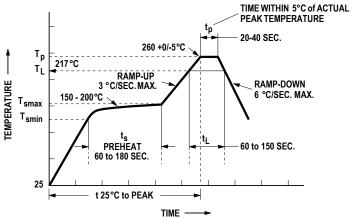
Remarks: The notation '#XXX' is used for existing products, while (new) products launched since 15th July 2001 and RoHS compliant option will use '-XXXE'.


Package Outline Drawings

ACPL-M43T Small Outline SO-5 Package (JEDEC MO-155)


2

Land Pattern Recommendation


DIMENSIONS IN MILLIMETERS AND (INCHES)

Solder Reflow Temperature Profile

Note: Non-halide flux should be used.

Recommended Pb-Free IR Profile

NO TES: THE TIME FROM 25°C to PEAK TEMPERATURE = 8 MINUTES MAX. T $_{\rm Smax}$ = 200°C, T $_{\rm Smin}$ = 150 °C

Note: Non-halide flux should be used.

Regulatory Information

The ACPL-M43T is approved by the following organizations:

UL

Approved under UL 1577, component recognition program up to $V_{ISO} = 3750 \text{ VRMS}$ expected prior to product release..

CSA

Approved under CSA Component Acceptance Notice #5.

Insulation and Safety Related Specifications

Parameter	Symbol	ACPL-M43T	Units	Conditions
Minimum External Air Gap (Clearance)	L(101)	≥5	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	L(102)	≥5	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.
Tracking Resistance (Comparative Tracking Index)	CTI	175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group (DIN VDE0109)		Illa		Material Group (DIN VDE 0109)

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Note
Storage Temperature		Ts	-55	150	°C	
Operating Temperature		T_{A}	-40	125	°C	
Lead Soldering Cycle	Temperature			260	°C	
	Time			10	S	
Average Forward Input Current		I _{F(avg)}		20	mA	1
Peak Forward Input Current (50% duty cycle, 1ms pulse width)		I _{F(peak)}		40	mA	2,
Peak Transient Input Current (<= 1us pulse width, 300ps)		I _{F(trans)}		100	mA	
Reversed Input Voltage		V _R		5	V	Pin 3 - 1
Input Power Dissipation		P _{IN}		30	mW	3
Output Power Dissipation		Po		100	mW	4
Average Output Current		I _O		8	mA	
Peak Output Current		lo(pk)		16	mA	
Supply Voltage (Pins 6-4)		V_{CC}	-0.5	30	V	
Output Voltage (Pins 5-4)		V _O	-0.5	20	V	
Solder Reflow Temperature Profile		See Reflov	v Temperatu	re Profile		

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Supply Voltage	V_{CC}	4.5	15.0	V	
Operating Temperature	T _A	-40	125	°C	

Electrical Specifications (DC)

Over recommended operating $T_A = -40^{\circ}\text{C}$ to 125°C , unless otherwise specified.

Parameter	Sym.	Min.	Тур.	Max.	Units		Conditions		Fig.	Note
Current Transfer	CTR	32	45	80	%	T _A =25°C	Vo=0.4V	Vcc=4.5V	1,2,4	5
Ratio		20	45		%		Vo=0.5V	I _F =10mA		
Logic Low	V _{OL}		0.1	0.4	V	T _A =25°C	lo=3mA			
Output Voltage				0.5	V		Io=2.4mA			
Logic High	I _{OH}		0.003	0.5	μΑ	T _A =25°C	Vo=Vcc=5.5V	I _F =0mA	7	
Output Current			0.01	1	μΑ	T _A =25°C	Vo=Vcc=15V			
				50	μΑ					
Logic Low Supply Current	I _{CCL}		50	200	μА		I _F =10mA, Vo=open, Vcc=15V			11
Logic High	I _{CCH}		0.02	1	μΑ	T _A =25°C	I _F =0mA,			11
Supply Current				2.5	μΑ		Vo=open, - Vcc=15V			
Input Forward	V _F	1.45	1.5	1.85	V	T _A =25°C	I _F =10mA		3	
Voltage		1.35	1.5	1.95	V		I _F =10mA			
Input Reversed Breakdown Voltage	BV_R	5			V		I _R =10μA			
Temperature Coefficient of Forward Voltage	ΔV/ ΔT _A		-1.5		mV/°C		I _F =10mA			
Input Capacitance	C _{IN}		90		pF		F=1MHz, V _F =0			
Input-Output Insulation	V _{ISO}	3750			V _{RMS}		RH≤50%, t=1min T _A =25°C	,		6,7
Resistance (Input-Output)	R _{I-O}		10 ¹²		Ω		$V_{I-O} = 500V_{DC}$			6
Capacitance (Input-Output)	C _{I-O}		0.6		pF		F=1MHz			6

Switching Specifications (AC)

Over recommended operating ($T_A = -40^{\circ}\text{C}$ to 125°C), $I_F = 10\text{mA}$, $V_{CC} = 5.0 \text{ V}$ unless otherwise specified.

Parameter	Symbol	Min	Тур	Max	Units		Test Conditions	Fig.	Note
Propagation Delay	T_{PHL}	0.08	0.2	0.8	μs	T _A =25°C	Pulse: f=10kHz, Duty cycle	5,6,	9
Time to Logic Low at Output		0.06		1.0	μs		=50%, I _F $= 10$ mA, V _{CC} $= 5.0V, RL = 1.9kΩ, CL = 15pFVTHHL= 1.5V$	8	
Propagation Delay	T_{PLH}	0.15	0.3	0.8	μs	T _A =25°C	Pulse: f=10kHz, Duty cycle	5,6,	9
Time to Logic High at Output		0.03		1.0	μs	-	=50%, $I_F = 10$ mA, $V_{CC} = 5.0$ V, $R_L = 1.9$ k Ω $C_L = 15$ pF $V_{THLH} = 2.0$ V	8	
Pulse Width	PWD	0	0.4	0.45	μs	T _A =25°C	Pulse: f=10kHz, Duty cycle		12
Distortion		0		0.85	μs		=50%, I_F =10mA, V_{CC} =5.0V, R_L =1.9k Ω , C_L =15pF, V_{THHL} =1.5V, V_{THLH} =2.0V		
Propagation Delay	t _{PLH} -t _{PHL}	0	0.4	0.5	μs	T _A =25°C	Pulse: f=10kHz, Duty cycle		13
Difference Between Any 2 Parts		0		0.9	μs		=50%, I_F =10mA, V_{CC} =5.0V, R_L =1.9 $k\Omega$, C_L =15 pF , V_{THHL} =1.5 V , V_{THLH} =2.0 V		
Common Mode Transient Immunity at Logic High Output	CM _H	15	30		kV/μs		V_{CM} =1500Vp-p, I_F =0mA, T_A =25°C, R_L =1.9k Ω	9	8,9
Common Mode Transient Immunity at Logic Low Output	CM _L	15	30		kV/μs		V_{CM} =1500 V_{P} - p , I_{F} =10 mA , T_{A} =25 $^{\circ}$ C, R_{L} =1.9 $k\Omega$		

Package Characteristics

*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Input-Output Momentary Withstand Voltage*	V _{ISO}	3750			Vrms	RH \leq 50%, t = 1 min;T _A = 25°C		6, 7
Input-Output Resistance	R _{I-O}		10 ¹²		Ω	V _{I-O} = 500 Vdc		6
Input-Output Capacitance	C _{I-O}		0.6		рF	$f = 1 \text{ MHz}; V_{I-O} = 0 \text{ Vdc}$		6

Notes:

- 1. Derate linearly above 85°C free-air temperature at a rate of 0.25 mA/°C.
- 2. Derate linearly above 85°C free-air temperature at a rate of 0.30 mA/°C.
- 3. Derate linearly above 85°C free-air temperature at a rate of 0.375 mW/°C.
- 4. Derate linearly above 85°C free-air temperature at a rate of 1.875 mW/°C.
- 5. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, Io, to the forward LED input current, IF, times 100.
- 6. Device considered a two terminal device: pins 1 and 3 shorted together, and pins 4, 5 and 6 shorted together.
- 7. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage \geq 4500 V_{RMS} for 1 second (leakage detection current limit, II-O \leq 5 μ A).
- 8. Common transient immunity in a Logic High level is the maximum tolerable (positive) dV_{CM}/dt on the rising edge of the common mode pulse, V_{CM} , to assure that the output will remain in a Logic High state (i.e., $V_O > 2.0$ V). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dV_{CM}/dt on the falling edge of the common mode pulse signal, V_{CM} to assure that the output will remain in a Logic Low state (i.e., $V_O < 0.8$ V).
- 9. The 1.9 k Ω load represents 1 TTL unit load of 1.6 mA and the 5.6 k Ω pull-up resistor.
- 10. The frequency at which the ac output voltage is 3 dB below its mid-frequency value.
- 11. Use of a 0.1 μ F bypass capacitor connected between pins 4 and 6 is recommended.
- 12. Pulse Width Distortion (PWD) is defined as $\left|t_{PHL}-t_{PLH}\right|$ for any given device.
- 13. The difference between t_{PLH} and t_{PHL} between any two parts under the same test condition.

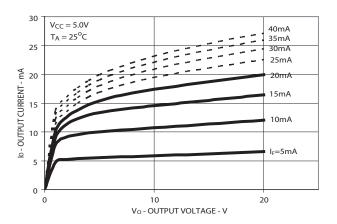


Figure 1. DC and Pulsed Transfer Characteristics.

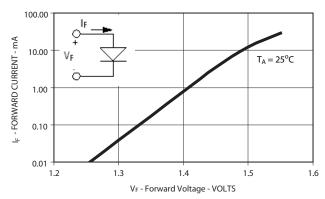


Figure 3. Input Current vs Forward Voltage

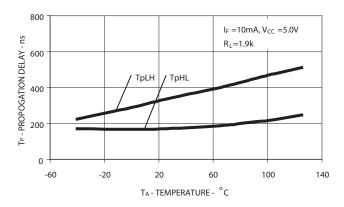


Figure 5. Propagation Delay vs Temperature

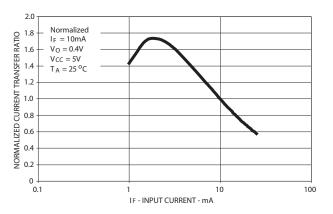


Figure 2. Current Transfer Ratio vs Input Current

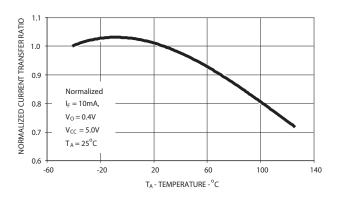


Figure 4. Current Transfer Ratio vs Temperature

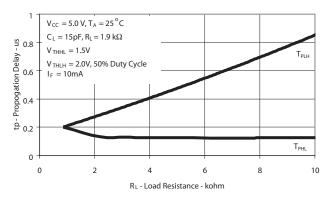


Figure 6. Propagation Delay Time vs Load Resistance

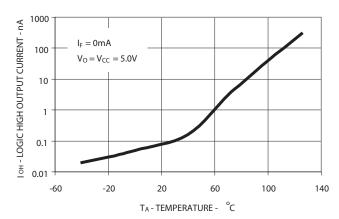


Figure 7. Logic High Output Current vs Temperature.

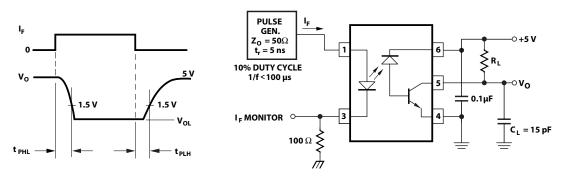


Figure 8. Switching Test Circuit

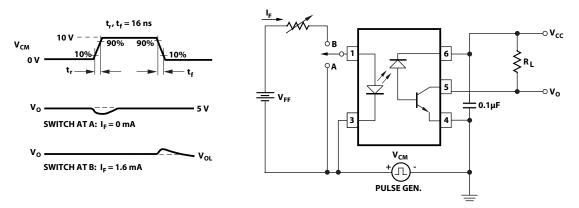


Figure 9. Test Circuit for Transient Immunity and Typical Waveforms.

AVAGO